import dataclasses
import os
Â
import datasets
import tqdm
import tokenizers
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.practical as F
import torch.optim.lr_scheduler as lr_scheduler
from torch import Tensor
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.information.distributed import DistributedSampler
Â
# Construct the mannequin
@dataclasses.dataclass
class LlamaConfig:
    “”“Outline Llama mannequin hyperparameters.”“”
    vocab_size: int = 50000  # Measurement of the tokenizer vocabulary
    max_position_embeddings: int = 2048  # Most sequence size
    hidden_size: int = 768  # Dimension of hidden layers
    intermediate_size: int = 4*768  # Dimension of MLP’s hidden layer
    num_hidden_layers: int = 12  # Variety of transformer layers
    num_attention_heads: int = 12  # Variety of consideration heads
    num_key_value_heads: int = 3  # Variety of key-value heads for GQA
Â
Â
class RotaryPositionEncoding(nn.Module):
    “”“Rotary place encoding.”“”
Â
    def __init__(self, dim: int, max_position_embeddings: int) -> None:
        “”“Initialize the RotaryPositionEncoding module
Â
        Args:
            dim: The hidden dimension of the enter tensor to which RoPE is utilized
            max_position_embeddings: The utmost sequence size of the enter tensor
        ““”
        tremendous().__init__()
        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        # compute a matrix of ntheta_i
        N = 10_000.0
        inv_freq = 1.0 / (N ** (torch.arange(0, dim, 2) / dim))
        inv_freq = torch.cat((inv_freq, inv_freq), dim=–1)
        place = torch.arange(max_position_embeddings)
        sinusoid_inp = torch.outer(place, inv_freq)
        # save cosine and sine matrices as buffers, not parameters
        self.register_buffer(“cos”, sinusoid_inp.cos())
        self.register_buffer(“sin”, sinusoid_inp.sin())
Â
    def ahead(self, x: Tensor) -> Tensor:
        “”“Apply RoPE to tensor x
Â
        Args:
            x: Enter tensor of form (batch_size, seq_length, num_heads, head_dim)
Â
        Returns:
            Output tensor of form (batch_size, seq_length, num_heads, head_dim)
        ““”
        batch_size, seq_len, num_heads, head_dim = x.form
        dtype = x.dtype
        # rework the cosine and sine matrices to 4D tensor and the identical dtype as x
        cos = self.cos.to(dtype)[:seq_len].view(1, seq_len, 1, –1)
        sin = self.sin.to(dtype)[:seq_len].view(1, seq_len, 1, –1)
        # apply RoPE to x
        x1, x2 = x.chunk(2, dim=–1)
        rotated = torch.cat((–x2, x1), dim=–1)
        output = (x * cos) + (rotated * sin)
        return output
Â
Â
class LlamaAttention(nn.Module):
    “”“Grouped-query consideration with rotary embeddings.”“”
Â
    def __init__(self, config: LlamaConfig) -> None:
        tremendous().__init__()
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_kv_heads = config.num_key_value_heads  # GQA: H_kv < H_q
Â
        # hidden_size should be divisible by num_heads
        assert (self.head_dim * self.num_heads) == self.hidden_measurement
Â
        # Linear layers for Q, Okay, V projections
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
Â
    def ahead(self, hidden_states: Tensor, rope: RotaryPositionEncoding, attn_mask: Tensor) -> Tensor:
        bs, seq_len, dim = hidden_states.measurement()
Â
        # Challenge inputs to Q, Okay, V
        query_states = self.q_proj(hidden_states).view(bs, seq_len, self.num_heads, self.head_dim)
        key_states = self.k_proj(hidden_states).view(bs, seq_len, self.num_kv_heads, self.head_dim)
        value_states = self.v_proj(hidden_states).view(bs, seq_len, self.num_kv_heads, self.head_dim)
Â
        # Apply rotary place embeddings
        query_states = rope(query_states)
        key_states = rope(key_states)
Â
        # Transpose tensors from BSHD to BHSD dimension for scaled_dot_product_attention
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)
Â
        # Use PyTorch’s optimized consideration implementation
        # setting is_causal=True is incompatible with setting express consideration masks
        attn_output = F.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=attn_mask,
            dropout_p=0.0,
            enable_gqa=True,
        )
Â
        # Transpose output tensor from BHSD to BSHD dimension, reshape to 3D, after which undertaking output
        attn_output = attn_output.transpose(1, 2).reshape(bs, seq_len, self.hidden_size)
        attn_output = self.o_proj(attn_output)
        return attn_output
Â
Â
class LlamaMLP(nn.Module):
    “”“Feed-forward community with SwiGLU activation.”“”
Â
    def __init__(self, config: LlamaConfig) -> None:
        tremendous().__init__()
        # Two parallel projections for SwiGLU
        self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.act_fn = F.silu  # SwiGLU activation operate
        # Challenge again to hidden measurement
        self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
Â
    def ahead(self, x: Tensor) -> Tensor:
        # SwiGLU activation: multiply gate and up-projected inputs
        gate = self.act_fn(self.gate_proj(x))
        up = self.up_proj(x)
        return self.down_proj(gate * up)
Â
Â
class LlamaDecoderLayer(nn.Module):
    “”“Single transformer layer for a Llama mannequin.”“”
Â
    def __init__(self, config: LlamaConfig) -> None:
        tremendous().__init__()
        self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=1e–5)
        self.self_attn = LlamaAttention(config)
        self.post_attention_layernorm = nn.RMSNorm(config.hidden_size, eps=1e–5)
        self.mlp = LlamaMLP(config)
Â
    def ahead(self, hidden_states: Tensor, rope: RotaryPositionEncoding, attn_mask: Tensor) -> Tensor:
        # First residual block: Self-attention
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        attn_outputs = self.self_attn(hidden_states, rope=rope, attn_mask=attn_mask)
        hidden_states = attn_outputs + residual
Â
        # Second residual block: MLP
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states) + residual
        return hidden_states
Â
Â
class LlamaModel(nn.Module):
    “”“The total Llama mannequin with none pretraining heads.”“”
Â
    def __init__(self, config: LlamaConfig) -> None:
        tremendous().__init__()
        self.rotary_emb = RotaryPositionEncoding(
            config.hidden_size // config.num_attention_heads,
            config.max_position_embeddings,
        )
Â
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
        self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.norm = nn.RMSNorm(config.hidden_size, eps=1e–5)
Â
    def ahead(self, input_ids: Tensor, attn_mask: Tensor) -> Tensor:
        # Convert enter token IDs to embeddings
        hidden_states = self.embed_tokens(input_ids)
        # Course of by all transformer layers, then the ultimate norm layer
        for layer in self.layers:
            hidden_states = layer(hidden_states, rope=self.rotary_emb, attn_mask=attn_mask)
        hidden_states = self.norm(hidden_states)
        # Return the ultimate hidden states
        return hidden_states
Â
Â
class LlamaForPretraining(nn.Module):
    def __init__(self, config: LlamaConfig) -> None:
        tremendous().__init__()
        self.base_model = LlamaModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
Â
    def ahead(self, input_ids: Tensor, attn_mask: Tensor) -> Tensor:
        hidden_states = self.base_model(input_ids, attn_mask)
        return self.lm_head(hidden_states)
Â
Â
def create_causal_mask(batch: Tensor, dtype: torch.dtype = torch.float32) -> Tensor:
    “”“Create a causal masks for self-attention.
Â
    Args:
        batch: Batch of sequences, form (batch_size, seq_len)
        dtype: Information sort of the masks
Â
    Returns:
        Causal masks of form (seq_len, seq_len)
    ““”
    batch_size, seq_len = batch.form
    masks = torch.full((seq_len, seq_len), float(‘-inf’), system=batch.system, dtype=dtype)
                .triu(diagonal=1)
    return masks
Â
Â
def create_padding_mask(batch: Tensor, padding_token_id: int, dtype: torch.dtype = torch.float32) -> Tensor:
    “”“Create a padding masks for a batch of sequences for self-attention.
Â
    Args:
        batch: Batch of sequences, form (batch_size, seq_len)
        padding_token_id: ID of the padding token
        dtype: Information sort of the masks
Â
    Returns:
        Padding masks of form (batch_size, 1, seq_len, seq_len)
    ““”
    padded = torch.zeros_like(batch, system=batch.system, dtype=dtype)
                  .masked_fill(batch == padding_token_id, float(‘-inf’))
    masks = padded[:,:,None] + padded[:,None,:]
    return masks[:, None, :, :]
Â
Â
# Generator operate to create padded sequences of mounted size
class PretrainingDataset(torch.utils.information.Dataset):
    def __init__(self, dataset: datasets.Dataset, tokenizer: tokenizers.Tokenizer,
                seq_length: int):
        self.dataset = dataset
        self.tokenizer = tokenizer
        self.seq_length = seq_length
        self.bot = tokenizer.token_to_id(“[BOT]”)
        self.eot = tokenizer.token_to_id(“[EOT]”)
        self.pad = tokenizer.token_to_id(“[PAD]”)
Â
    def __len__(self):
        return len(self.dataset)
Â
    def __getitem__(self, index):
        “”“Get a sequence of token ids from the dataset. [BOT] and [EOT] tokens
        are added. Clipped and padded to the sequence size.
        ““”
        seq = self.dataset[index][“text”]
        tokens: listing[int] = [self.bot] + self.tokenizer.encode(seq).ids + [self.eot]
        # pad to focus on sequence size
        toklen = len(tokens)
        if toklen < self.seq_length+1:
            pad_length = self.seq_length+1 – toklen
            tokens += [self.pad] * pad_size
        # return the sequence
        x = torch.tensor(tokens[:self.seq_length], dtype=torch.int64)
        y = torch.tensor(tokens[1:self.seq_length+1], dtype=torch.int64)
        return x, y
Â
# Load the tokenizer
tokenizer = tokenizers.Tokenizer.from_file(“bpe_50K.json”)
Â
# Load the dataset
dataset = datasets.load_dataset(“HuggingFaceFW/fineweb”, “sample-10BT”, break up=“practice”)
Â
# Initialize the distributed setting
dist.init_process_group(backend=“nccl”)
rank = dist.get_rank()
local_rank = int(os.environ[“LOCAL_RANK”])
world_size = dist.get_world_size()
system = torch.system(f“cuda:{local_rank}”)
print(f“World measurement: {world_size}, Rank: {rank}, Native rank: {local_rank}. Utilizing system: {system}”)
#torch.cuda.set_device(local_rank)
#torch.set_default_device(system)
Â
# Create pretraining mannequin with default config, then wrap it in DDP
model_config = LlamaConfig()
mannequin = LlamaForPretraining(model_config).to(rank)
mannequin = DDP(mannequin, device_ids=[local_rank])Â Â # , output_device=local_rank)
mannequin.practice()
Â
# print the mannequin measurement
print(f“Mannequin parameters measurement: {sum(p.numel() for p in mannequin.parameters()) / 1024**2:.2f} M”)
print(f“Mannequin buffers measurement: {sum(p.numel() for p in mannequin.buffers()) / 1024**2:.2f} M”)
print(f“Mannequin precision(s): {set([x.dtype for x in model.state_dict().values()])}”)
Â
# Coaching parameters
epochs = 3
learning_rate = 1e–3
batch_size = 64
seq_length = 512
num_warmup_steps = 1000
PAD_TOKEN_ID = tokenizer.token_to_id(“[PAD]”)
Â
# DataLoader, optimizer, scheduler, and loss operate
dataset = PretrainingDataset(dataset, tokenizer, seq_length)
sampler = DistributedSampler(dataset, shuffle=False)
dataloader = torch.utils.information.DataLoader(
    dataset,
    batch_size=batch_size,
    sampler=sampler,
    pin_memory=True,  # elective
    shuffle=False,
    num_workers=world_size,
)
optimizer = torch.optim.AdamW(
    mannequin.parameters(), lr=learning_rate, betas=(0.9, 0.99), eps=1e–8, weight_decay=0.1
)
num_training_steps = len(dataloader) * epochs
print(f“Variety of coaching steps: {num_training_steps} = {len(dataloader)} * {epochs}”)
warmup_scheduler = lr_scheduler.LinearLR(
    optimizer,
    start_factor=0.1, end_factor=1.0, total_iters=num_warmup_steps
)
cosine_scheduler = lr_scheduler.CosineAnnealingLR(
    optimizer,
    T_max=num_training_steps – num_warmup_steps,
    eta_min=0
)
scheduler = lr_scheduler.SequentialLR(
    optimizer,
    schedulers=[warmup_scheduler, cosine_scheduler],
    milestones=[num_warmup_steps]
)
loss_fn = nn.CrossEntropyLoss(ignore_index=PAD_TOKEN_ID)
Â
# begin coaching
for epoch in vary(epochs):
    pbar = tqdm.tqdm(dataloader, desc=f“Epoch {epoch+1}/{epochs}”)
    sampler.set_epoch(epoch)  # required for shuffling solely
    for batch_id, batch in enumerate(pbar):
        if batch_id % 1000 == 0 and rank == 0:
            # checkpoint the mannequin and optimizer state, solely on rank 0 course of
            torch.save({
                “mannequin”: mannequin.module.state_dict() if isinstance(mannequin, DDP) else mannequin.state_dict(),
                “optimizer”: optimizer.state_dict(),
                “scheduler”: scheduler.state_dict(),
                “epoch”: epoch,
                “batch”: batch_id,
            }, f“llama_pretraining_checkpoint.pth”)
        # get batched information, transfer from CPU to GPU
        input_ids, target_ids = batch
        input_ids = input_ids.to(system)
        target_ids = target_ids.to(system)
        # create consideration masks: causal masks + padding masks
        attn_mask = create_causal_mask(input_ids) +
                    create_padding_mask(input_ids, PAD_TOKEN_ID)
        # extract output from mannequin
        logits = mannequin(input_ids, attn_mask)
        # compute loss: cross-entropy between logits and goal, ignoring padding tokens
        loss = loss_fn(logits.view(–1, logits.measurement(–1)), target_ids.view(–1))
        # backward with loss and gradient clipping by L2 norm to 1.0
        optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(mannequin.parameters(), 1.0)
        optimizer.step()
        scheduler.step()
        pbar.set_postfix(loss=loss.merchandise())
        pbar.replace(1)
    pbar.shut()
Â
# Save the mannequin
if rank == 0:
    torch.save(mannequin.state_dict(), “llama_pretraining_model.pth”)
    torch.save(mannequin.base_model.state_dict(), “llama_model.pth”)
Â
# Clear up the distributed setting
dist.destroy_process_group()

